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regions and for low solar angles (Figure 5).
The experiments of Pettit and Nicholson
measure surfaces that are strongly illuminated.
However, heat conduction is important in study-
ing the nighttime cooling of a lunar crater and
will be discussed in a subsequent paper.

A second problem concerns the flux that will
be conducted laterally across the surface of the
crater because of lateral temperature gradients.
This flux will smooth the temperature varia-
tions across the surface, creating a uniform tem-
perature distribution in very small craters. Since
the temperature distribution is established by
the radiation balance at the surface, the effect of
the conducted flux will be important only when
it becomes of the order of the incident solar
flux. To estimate the maximum temperature
gradient that can exist on the surface, we need
only know the thermal conductivity. Probable
thermal conductivities for the moon vary from
3 X 10 for a pumice of 35% porosity to
6 X 10 for an open cell structure of 88%
porosity [Glaser and Wechsler, 1965]. Taking
an average value of 10 and a solar constant of
0.033 (cal/cm®/sec), we obtain the following
maximum temperature gradient:

dT/dz = f,/k = 3300°K/cm @)

This value implies that a temperature difference
of 100°K can exist in a crater as small as 1 mm
in diameter. Thus, owing to the very low ther-
mal conductivity of the lunar surface, the tem-
perature gradients can be extremely large and
still not disturb the radiation balance at the
surface. As a consequence we will assume for
our model that the temperature distribution in
a lunar crater is completely determined by
radiation.

BUHL, WELCH, AND REA
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Fig. 3. Solar flux incident on a spherical crater.

emitted from the surface as thermal radiation.
Because of the shape of the crater, certain
regions will be in shadow for part of the day
and hence receive no direct insolation. It is
clear that each point in the crater receives a
different illumination as a function of time.
Therefore, the calculation of the temperature
history of a point in the crater must take into
account the effects of shadowing and local in-
cidence angle.

In setting up the problem, the radiation in-
terchange within the crater must be studied in
detail. There are two processes that will be con-
sidered. Both processes involve the absorption
of radiation from other parts of the crater. The
most important effect is that some of the in-
frared radiation emitted by an element of area
in the crater is intercepted by the rest of the
crater. Thus, the flux absorbed at a point has a
term that is a function of the amount of in-
frared radiation being emitted by all other
points in the crater in addition to the direct
solar flux term. A smaller effect is produced
by the multiple reflection of the solar radiation
within the crater. This optical reflection is,
however, very quickly absorbed because of the
Jow visual albedo (0.1). It is sufficiently ac-
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Perennial Shadows on Low-Obliquity Bodies

« Any planetary body with a
(stable) low obliquity can
have perennially
shadowed regions

« Examples: Moon, Mercury,
Ceres, Ganymede, Europa,
etc. e

+ Cold traps mapped on the [
Moon are typically > 0.1-1
km in size

Arizona State University



Perennial Shadows on Low-Obliquity Bodies

« Surface ice is stable
against sublimation < 110 K
(Vasavada et al., 1999)

« Subsurface ice is stable
against sublimation < 145 K
(Schorghofer et al., 2008)

« Temperaturesin many lunar
perennially shadowed
regions never rise above
~110K

Diviner south polar temperature data



Radar Reflectivity
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Ganymede
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Lunar Neutron Datao

LEND global mean
epithermal neutron count
rates (Litvak et al., 2011):

1.02
1.00f
0.98}
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Normalized counting rate

0.94 .

0.92 South Pole North Pole ]
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LE.ND epithermal neutron counts, We are interested in this

minus background region. Is it all explained by
2

(Boynton et al., JGR, 2011) fhe large P3Rst



Smoothed Background Hydrogen Map
(LEND)
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Epithermal neutron count rate (~1/water) from LEND (Boynton et al., 2012)
g

Three possible explanations:

« Adsorbed H,O/OH

» Subsurface ice

 |ce in unresolved small-scale cold traps
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Three possible explanations:

« Adsorbed H,O/OH

» Subsurface ice

 |ce in unresolved small-scale cold traps
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Temperatures in Shadow and Sunlight

Hot sunlit surfaces,
~400 K at normal
solar incidence

Cold shadows, ~100 K



Depth

Thermal Isolation
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(Hayne et al., 2012)
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Conduction Length Scale

Equilibrium length scale (meters)

Balance thermal emission from cold
frap with mean annual temperature
on nearby illuminated surface.

10°

k=1.02Wm' K

Dashed lines = diurnal thermal skin depth

0 10 20 30

40 50
Latitude (deg.)

> Minimum cold trap size on
the Moon is < 10 cm, probably
~l cm




Measuring Surface Roughness via IR Emission
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Diviner channels indicated by arrows)



Surface Roughness from Diviner: Apollo 11
Landing Site

Apollo 11 Landing Site

30
« Diviner data 25| Data
constrain roughness o " Binnedmean
at scales < 250 m Model
< 15 0 =4
« Best-fit RMS slope ~° 10t ‘
~20°-30° ,im | g
e 0
« This is fairly typical of 0 1
both maria and 5t
highlands terrain 10 , . ,
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Solar incidence angle ( °)



Rough Surface Temperatures
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Shadows in LROC Images







Shadow Fraction: Model vs. Data
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~5-10° RMS slope compares well
with results of Rosenburg et al.

(2011) using 17-m baseline LOLA
data



Temperatures in Perennially Shadowed
Craters

Maximum temperature in Lowermost latitude where ice is
shadowed portion of crater stable in the shadowed regions
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Depth-diameter Ratios of Very Small Craters

121[1[11!1

BestFit R'd/D BestFit R’ d/D,.. r
site 4o Ft  d/p, Ft H Data
Apollols 0.135 0.78 0.146 0.85 A .
Bhabha 0109 075 0111 080 I Log-normal fit:
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Marius 0.131 077 0.141 0.82 . + Apollols
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LROC data courtesy of Prasun Mahanti



Thermally Stable Area

« Total area ~ 10°
km?

« Comparable to
area of larger
mapped cold

Area Fraction
(@)
(@)
S

0.02 traps (Mazarico
et al., 2011; Paige
. et al., 2010)
60 70 80 90

Latitude (deg.)



Background Adjusted Count Rate (cps)

Area Fraction

Comparison with Neutrons

1.7

1.68 2 *
*
1.66 ®
1.64 ’. LEND background neutron
162 suppression (Boynton et al., 2012)
2
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"Three Amlgos

Each crater actually has
quite a different average
and range of thermal
environments

Haworth is by far the
coldest on average

Faustini has the greatest
diversity, with both <80 K
and even some > 100 K
regions

Trend in LAMP in increasing
apparent ice content:
Haworth >> Faustini >
Shoemaker
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Scaled value
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onclusions
How small, and how prev I:are sméll-gééle 'g:‘old traps?
« Smallest cold traps are < 10 cm, probably ~1 ¢cm at high
latitudes, based on Diviner data

- Diviner thermal emission spectra consistent with RMS surface
slopes ~20-30°% at scales < 250 m

‘,‘.What'are the dlstrlbutlor.%.and 1mportance of smal'l cold traps for trapping ice?
' Jemperature calculations predict a steep pole-ward increase in
ice'stability within littfle cold traps, consistent with neutron data

« Comparable surface area (~10° km?) expected for micro cold
traps compared to those resolvable on the ~250 m scale

» Future work should investigate fransport, losses, burial and
retention of volatiles in small cold traps
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Cold Trapping at the Surface
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FIG. 1. Evaporation rates into a vacuum as functions of temperature for
CO,, NH;, SO;. cubic H,;O, and S, (solid orthorhombic sulfur) ices. Vapor
pressure data were taken from the CRC Handbook of Chemistry and Physics
(Lide 1993), Bryson et al. (1974), and Moses and Nash (1991). The calculation
of evaporation rates follows Watson e7 a/. (1961). The dashed line marks the rate

at which one meter of ice would survive for 1 billion years. The curves cross
this line at 59, 71, 78, 112, and 218 K.

Vasavada et al. (1999)



solar
Ice Sublimation and Lag & R
Formation H,0 (g) \ to space

p=0

* |ce table moves downward as
ice sublimates and diffuses
through desiccated regolith
layer
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* Quasi-steady state can result if
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* Depth of ice table depends on
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