Monitoring Volatiles While Drilling Into Frozen Lunar Simulant.

T. Roush, A. Colaprete, J. Forgione, B. White, R. McMurray (NASA Ames Research Center)

A. Cook, R. Bielawski, E. Fritzler (Millenium Engineering & Integration Co.)

S. Thompson (UC Santa Cruz)

J. Benton (Wyle Labs)

J. Kleinhenz (NASA Glenn Research Center)

G. Paulsen, K. Zacny (Honeybee Robotics)

J. Smith (Kennedy Space Center)
Near-InfraRed Volatile Spectrometer System (NIRVSS) Component Fields of View

DOC, camera + LEDs
IR emitter
SW 1600-2400 nm
LW 2300-3400 nm
LCS 8 µm
LCS 10 µm
LCS 12.5 µm
GRC 2015, Soil Tube 1, 3/9/2015

Drill Hole Pattern

Temporal Sequence

Not Discussed
What spectral features might be present?

Water vapor, water ice and simulant spectra
GRC 2015 Soil Tube 1, Drill Hole 1, Peck 3

- Bit depth
- Mass 18 Images
- Drill Bit Depth, cm
- Band Depth
- Time

- Ratio to PreDrill
- Wavelength, nm

- Mass 18 pressure, torr
- Images
- Band Depth
Peck 3, max depth = 30 cm

Why are the ice features subdued @ 30 cm?
Anomalous spectral behavior of Hole 5 caused by back-filling previous holes.
Summary

NIRVSS successfully observed the immediate vicinity of the drill site before and during drilling operations to look for near real-time changes in the properties of the exposed materials.

Spectrometers were used to identify the appearance and disappearance of water ice, providing the ability to constrain its presence in the stratified soils.

DOC images provided the ability to
- explain differences in spectral properties observed between different holes drilled into the surface.
- document the surface changes, and soil mechanical properties during drilling (not discussed)