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Articles on Proton Albedo and Implications
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Recent Results

* Radically New Radiation Environment,
Implications for Human Exploration

* Lunar Subsurface Charging and Dielectric

Breakdown — Implications for Regolith

* New Insights on Energetic Particle
Albedo Protons — Hotspots and possible
Implications for Surface Hydrated Layer
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E R Cosmic Ray Telescope for the Effects of Radiation
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CRaTER 2191 day combined detectors dose rate data
from: 2009-06-26 DOY:177
through: 2015-06-25 DOY:176
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Nasa Breakdown weathering may be

comparable to meteoritic weathering
Pole South Pole
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process m2yrl) production melted or
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o & Meteorites 12 1.8 x 10”7 ~10%
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1) Grain at regolith’s surface

Regolith

2) Breakdown vaporizes
some of grain’'s material
and splits grain

3) Grain fragments move,
changing regolith’s porosity;
some of vaporized material
Is deposited on surrounding
regolith

We're in the process of discovering how this might affect the albedo in PSRs.
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Investigations of chemical alteration of
regolith by energetic particles and cosmic rays

(Schwadron et al., 2012) (Jordan et al., 2013)

[43] In summary, CRaTER provides direct observations of Gardening depth (cm)

dose rates near the lunar surface. These CRaTER dose rates 50 64 78 92 105 119 132 145
are likely underestimates of the average dose rates over long
periods of time, implying dose deposition of more than
88 eV/molecule over 4 billion years. As a result, GCRs
cause significant space weathering on the Moon. This is
particularly the case in permanently shaded regions, which
are bombarded by GCRs while being protected from visible
light, UV, and solar wind. The exposure of material within
these shaded regions should reduce reflectance, cause cle-
vated carbon to hydrogen ratios, and lead to the build-up of
significant chemical alteration within the outer regolith. The
large GCR dose rates observed by CRaTER suggest that
GCR bombardment plays an important role in the balance
that determines the amounts of water ice within regolith of
permanently shaded craters.

H2 per original H20 (%)
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Observed amount of H, wrt H,0 molecules in Figure 6. The mumber (as & percantags) of Hy moleoules created by GCRs and SEPs with
LCROSS impact: 8% (+10%/-4%) respect to the original number of water molecules as

1s a function of gardening time (lower axis

and depth (upper axis). We have assumed that the GCR dose is applicable to 36 cm and the

After 1 billion years, GCR and SEP radiolysis SEP doss to 0.1 ctn. The dashed Hoe shows the percentage f G = 0.1, and the ol lze G
likely accounts for 10-100% of observed H, 07

Schwadron, N. A,, et al., Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER), J.
Geophys. Res. — Planets, 117, DOI: 10.1029/2011JE003978, 2012.

Jordan, A. P, et al., The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles, J. Geophys. Res. — Planets,
DOI:10.1002/jgre.20095, 2013.

M2 Work motivated by comment from Mike Wargo!!
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Nas8  Beam runs (HIMAC & MGH) with CRaTER EM
confirm nuclear evaporation concept

- N !‘\ _JZ?13, HIMAC beam testing

2012, HIMAC beam testing -
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"Beam runs with CRaTER and Slmulatlons‘/f
confirm nuclear evaporation concept
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Suppression of Radiation Albedo from H-rich Geant Simulations by Mark Looper
material

Predictions for nuclear evaporation/forward scattering

* Higher Average Nucleon Mass (density) leads to increased proton albedo

* Presence of H in regolith should decrease proton albedo!




Possible composition dependence of

albedo sources
See Wilson et al., Poster #

(Wilson et al., 2013, work in progress)
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NA aPossible Albedo Proton
Signature of
Hydrated Lunar Surface
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The latitude trend in the proton
albedo suggests a 1-10 cm layer of
hydrated regolith that is more
prevalent near the poles
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& Hydrated Surface Layer - Properties } 24

F]; — Fp + Ez(dnHUnp)

F, Proton F, Proton F., Neutron

Flux from Flux Flux

Top regolith  from from
depth depth

A =~ (dn'HU'n.p)Fn./Fp dn‘H ~ A-F‘p/(-F"nO'-n.p)

Fractional Excess Column density in upper layer

__—> d~20cm > H 200 ppm by weight

A = 1.01 + 0.34%
1 \ d~2cm > H 2000 ppm by weight

Modeled H in cold traps 200-4000 ppm, Teodoro et al., GRL, 37, L12201, 2010
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Dose and Dose Rate Estimates

After Spence et al., 2013

D5-D6 absorbed dose rate percentages by species
(Total absored dose rate in Silicon = 0.0037 cGy/d; annual dose = 0.14 Gy

Albedo protons
3.1%

L ey
0.7%

Albedo gammas
1.1%

Albedo electrons
2.2%

Albedo positrons
1.5%

e Use validated GEANT4 model of CRaTER response to primary GCR and lunar
secondaries to assess contributions by species
* Secondary albedo particles account for ~10% of absorbed dose rate




LRO/CRaTER Summary

 Deepest Solar Minimum and Weakest Maximum
more than 80 years

— Increased GCR radiation intensity in solar minima

— Lower probability of SEP events = Enabler for launching missions
near solar maxima

e Radiation Effects on the Moon

— Chemical modification of Lunar Regolith

— Deep dielectric charging =2 grain fragmentation in PSRs
and changes in regolith porosity

* Proton (Radiation) Albedo
— Evidence of nuclear evaporation (Maria vs. Highlands)
— Possible evidence of Hydrated surface layer

(@) cxrioration
# SCIENCE
JULY 21-23, 2015
FORUMy 2 mmzcncom




Hear Morel!

Jordan et al., Possible Dielectric Breakdown
Weathering Effects o the Comminution of Lunar
Regolith, Session #8, 2:30 PM

Spence et al., Particle Radiation Environment and
Their Effects at Exploration Destinations, Session

#7,2:45 PM

Wilson et al., Lunar Proton Albedo Anomalies:
Soil, Surveyors, and Statistics, [Poster #38]

Smith et al., The MERLIN Phobos lonizing
Radiation Experiment (MPIRE) [Poster #34]
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NASA

Understanding
of Radiation
Driving New
Data Products

Rate of SEP
events that may

cause regolith
breakdown
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