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What is the epiregolith?
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= The epiregolith (Mendell and Noble, 2010) is the surface layer of
lunar regolith that interacts with the space environment

> The sensing depth for optical remote sensing techniques

= Epiregolith thermal gradients greatly affect mid-infrared
spectrscopy (e.g. CF position and intensity, RB contrast)

> Induces a wavelength dependent temperature effect
> Effects for UV, visible, near-infrared, and far-infrared are unknown
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Why simulated lunar eclipses?
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= Thermal wave penetration depth is
related to the duration of the thermal

pulse
» Diurnal (29 days) = few 10s cm
» Eclipse (hours) = few cm f?

= Pre-dawn and deep eclipse
temperatures combined with thermal |
models can constrain thermal inertia Period =29 Pefiod =5h
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= The lunar surface is typically at
radiative equilibrium with
temperatures changing slowly rem

Depth

= Eclipse cooling and warming is much
more abrupt affecting the upper mm 10 cmy

> Multi-spectral observations may
elucidate insolation deposition / i
thermal emission as a function of |
depth Ifimt-—e——b e e
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= LRO Diviner Lunar Radiometer observed
wavelength dependent heating immediately
following a lunar eclipse (creenhagen et al., 2015 - LPSC)
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= Surface cools rapidly, indicating a highly
insulating layer (Hayne et al.)
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Diviner Eclipse Observations (lll)
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= Post-eclipse heating 9 and 50 um dominates anisothermality
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\ Solar Input Beam = Specifically designed
thermal-vacuum chamber

to simulate conditions on
the lunar surface [Thomas
et al., 2012]

> Pressure: <10-4 mbar
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Methodology SVl \orTices

= Two Apollo Soils: 15071 (mare) and 61141 (highlands)
= Two sample cup temperatures: 283K and 353K

= Each sample run included cool-down and warm-up

= Typical sample run
> Heat sample (using lamp and heater) to radiative equalibrium
» Collect baseline spectrum
» Turn lamp off
> Collect data for 20 minutes (30 second increments)
» Collect baseline spectrum
> Turn lamp on
» Collect data for 20 minutes (30 second increments)

= Also, new calibration measurements and pipeline
> Some issues reducing the 61141 data
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» Rapid initial temperature change (>100K / 3 min)
» Consistent with a highly insolating regolith

= Generally consistent with Diviner observations
> Still cooling >1K / min at end of cooling experiment




Results: Spectral (I)
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= Cooling run

> CF shifts
shortward

» CF intensity
increases

> RB contrast
decreases

= Warming run

> CF shifts first
longward, then
shortward

» CF intensity
first decreases
then increases

> RB intensity
increases
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Results: Spectral (1)
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= Preferential cooling and heating in Reststrahlen Bands is
generally consistent with Diviner observations
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= Sample cup

temperature
effects are ~10K
for this 20
minute
experiment

Future
experiments will
expand
parameter space

» Colder sample
cup heater

> Longer time
baseline
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Future Work vo".ST.ces

Next round(s) of laboratory experiments
» Shorter and longer (more eclipse-like) thermal pulses

» Variable heating (lamp and sample cup) and sampling packing (i.e.
Donaldson Hanna et a., NESF2014)

» Effects of composition and maturity

Incorporate thermophysical models

» Cool-down is dominated by thermal inertia and established
thermophysical models can constrain the thermal inertia of the
epiregolith of our laboratory samples

» Led by Hayne (JPL), based on Diviner-derived thermal model

* Incorporate spectral models

> Warm-up is dominated by wavelength-dependent insolation deposition
> Led by Bowles (Oxford), based on Millan et al., 2011 spectral model

Incorporate relevant Diviner eclipse data




Relevant Diviner Eclipse Observations
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* Diviner has observed two total lunar eclipses with adequate
illumination geometry

* There is one more total eclipse during ESM2

LRO Mission BUAING] SC Lon Local Time
Status

12/21/10 Science Turned Off

6/15/11 Science Operational -77.1 06:50

12/10/11 Science Operational -81.5 06:34
4/15/14 ESM1 Turned Off N/A N/A
10/8/14 ESM2 Operational -35.9 09:37
4/4/15 ESM2 Operational -48.4 08:46
9/28/15 ESM2 Planned ~ 30 ~14:00

= LRO will propose additional eclipse observations for ESM3




Conclusions

= Short thermal pulses contain information regarding the
thermophysics of the upper mm of regolith

= Cooling observations imply a highly insulating epiregolith
> Rapid cooling

= Warming observations can provide insights into insolation
deposition as a function of depth

> Reststrahlen bands initially enhanced as surface warms more
quickly than near-surface

» Christiansen feature is initially subdued

= Simulated environment laboratory work coupled with Diviner
observations serve as key inputs into necessary thermophysical
and spectral thermal modeling

* Incorporate findings into VORTICES multi-body thermal model
(SHERMAN)

> Aid interpretation of NIR and MIR thermophysical and
compositional datasets of Moon, NEAs, and moons of Mars




Questions?
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